Semidualizing Modules Over Numerical Semigroup Rings

Hugh Geller Joint work with Ela Celikbas and Toshinori Kobayashi

West Virginia University

October 2, 2023

Goal: Classify which numerical semigroup rings possess a nontrivial semidualizing module.

Questions to address:

- What is a numerical semigroup ring?
- What is a semidualizing module? What makes it nontrivial?
- What is the motivation behind this goal?
- What progress has been made?

Numerical Semigroup Rings

Definition (Numerical Semigroup)

Let \mathbb{N} denote the set of non-negative integers. A numerical semigroup is a subset $H \subset \mathbb{N}$ such that

- $0 \in H;$
- *❷ H* is closed under addition; and
- $\mathbf{3} \, \gcd(H) = 1.$

Definition (Numerical Semigroup Ring)

Let k be a field and $H = \langle a_1, \ldots, a_\ell \rangle$ a numerical semigroup. The numerical semigroup ring (associated to H over k) is the ring

$$R_H = k[\![H]\!] := k[\![t^{a_1}, \dots, t^{a_\ell}]\!] \subseteq k[\![t]\!].$$

Numerical Semigroup Terminology and Facts

Set
$$H = \langle a_1, \dots, a_\ell \rangle$$
 with $a_1 < a_2 < \dots < a_\ell$.
1 Frobenius of H :
 $F_H := \max \mathbb{N} \setminus H$

2 Pseudo-Frobenius number of *H*:

 $PF(H) := \{ f \in \mathbb{N} \setminus H : \text{for all } a \in H, a + f \in H \}$

6 Multiplicity of R_H :

$$e(R_H) = a_1$$

4 Embedding Dimension of R_H :

 $\operatorname{edim}(R_H) = \ell$

Example: $H = \langle 9, 12, 15, 17, 19 \rangle$

1
$$F_H = 25$$

2 $PF(H) = \{20, 22, 23, 25\}$
3 $e(R_H) = 9$
4 $edim(R_H) = 5$

Canonical Module

Definition

Let (R, \mathfrak{M}) be a Cohen-Macaulay local ring and K an R-module. We say K is a canonical module if it is

- 1) a maximal Cohen-Macaulay of type 1; and
- 2 K has finite injective dimension.

Fact

Let (R, \mathfrak{M}) be a Cohen-Macaulay local ring. The canonical module K is unique up to isomorphism.

Fact

Let H be a numerical semigroup. The ring R_H possesses a canonical module.

Example Continued: $H = \langle 9, 12, 15, 17, 19 \rangle$

Fact

Let H be a numerical semigroup and R_H the corresponding numerical semigroup ring with canonical module K_H . We have

$$K_H \cong \left\langle t^{F_H - f} : f \in \operatorname{PF}(H) \right\rangle.$$

Recall: $PF(H) = \{20, 22, 23, 25 = F_H\}$

$$\begin{aligned} \left| \int_{\mu} \tilde{=} \left\langle t^{25-25}, t^{25-23}, t^{25-22}, t^{25-20} \right\rangle \\ &= \left\langle 1, t^{2}, t^{3}, t^{5} \right\rangle \end{aligned}$$

Semidualizing Module

Let K be the canonical module for (R, \mathfrak{M}) .

Definition

A finitely generated R-module C is semidualizing if it satisfies

1 The natural homothety map $\chi_C^R : R \to \operatorname{Hom}_R(C, C)$ given by $\chi_C^R(r)(c) = rc$ is an *R*-module isomorphism; and

2
$$\operatorname{Ext}_{R}^{i}(C,C) = 0$$
 for all $i > 0$.

It follows that R and K are both semidualizing module for R; we refer to them as trivial semidualizing modules.

Fact (Christensen'01)

If R is a Gorenstein, then it only has trivial semidualizing modules.

Only Trivial Semidualizing Modules

Proposition

Let (R,\mathfrak{M}) be a Cohen-Macaulay local ring such that

1 $\operatorname{edim}(R) - \operatorname{depth}(R) \le 3$ (LM'20, AINSW'22);

- ≥ $\mathbf{x} = x_1, \ldots, x_n \in \mathfrak{M}$ is *R*-regular and *R*/(\mathbf{x}) only has trivial semidualizing module (CSW'08 and FSW'07, NSW'13);
- **3** $e(R) \le 8$; or

 $\bigcirc R \cong S/I$ where S is regular local and I is a Burch ideal of S;

then R only has trivial semidualizing modules.

Proposition

Let (R, \mathfrak{M}) be a Cohen-Macaulay local ring. If e(R) = 9 and R has a nontrivial semidualizing module, then R has type r(R) = 4 and $\operatorname{edim}(R) = 4 + \dim R$.

Example Continued: $H = \langle 9, 12, 15, 17, 19 \rangle$

Observe:

• $e(R_H) = 9$

•
$$K_H \cong \left\langle 1, t^2, t^3, t^5 \right\rangle$$

•
$$r(R_H) = \mu_R(K_H) = 4$$

• $\operatorname{edim}(R_H) = 5 = 4 + \dim R_H$

Fact: $I = \langle 1, t^2 \rangle$ and $I^{\vee} = \langle 1, t^3 \rangle$ are semidualizing over R_H .

Lemma

Let R be a Cohen-Macaulay local ring with canonical module K. Write the functor $\operatorname{Hom}_R(-,K)$ as $(-)^{\vee}$. Let C be a semidualizing over R. Then

- **1** C^{\vee} is semidualizing.
- $c \otimes_R C^{\vee} \cong K.$

Set-up:

Let H be a numerical semigroup such that:

1)
$$e(R_H) = 9;$$
 and

$$2 \operatorname{edim}(R_H) = 5.$$

We consider $H = \langle 9, a, b, c, d \rangle$ with 9 < a < b < c < d.

Problem: There are infinitely many choices of *H*!

Solution: Equivalence classes

Apéry Set

Definition

Given a numerical semigroup H and integer $3 \le m \in H$, the Apéry set of H with respect to m is the set

$$\operatorname{Ap}_{m}(H) = \{0, h_{1}, h_{2}, \dots, h_{m-1}\}$$

where $h_i = \min\{h \in H : h \equiv i \mod m\}$ for $1 \le i < m$.

Consider $H = \langle 9, 12, 15, 17, 19 \rangle$

 $\operatorname{Ap}_9(H) = \{0, 19, 29, 12, 31, 32, 15, 34, 17\}$

Apéry Set Relations for $H = \langle 9, 12, 15, 17, 19 \rangle$

$$\operatorname{Ap}_{9}(H) = \{0, 19, 29, 12, 31, 32, 15, 34, 17\}$$

Relations:

Fact

Let H be a numerical semigroup and $m \in H.$ Given $1 \leq i,j < m$ with $i+j \neq m$, then the elements of $\mathrm{Ap}_m(H)$ satisfy

$$\begin{cases} h_i + h_j \ge h_{i+j} & i+j < m \\ h_i + h_j \ge h_{i+j-m} & i+j > m \end{cases}$$

Kunz's Polyhedron (Kind of)

For $3 \leq m \in \mathbb{Z}$, the polyhedral cone C_m is the solution set of

$$\begin{cases} X_i + X_j \ge X_{i+j} & 1 \le i < j < m \text{ and } i+j < m \\ X_i + X_j \ge X_{i+j-m} & 1 \le i < j < m \text{ and } i+j > m \end{cases}.$$

Note: The facets of C_m are given by

$$E_{ij} = \begin{cases} X_i + X_j = X_{i+j} & 1 \le i < j < m \text{ and } i+j < m \\ X_i + X_j = X_{i+j-m} & 1 \le i < j < m \text{ and } i+j > m \end{cases}$$

If F is a face of C_m , then it is completely determined by the set

$$\Delta_F := \{(i,j) : F \subseteq E_{ij}\}.$$

٠

C_m and $\operatorname{Ap}_m(H)$

Fact

If H is a numerical semigroup with $m \in H$, then $\operatorname{Ap}_m(H)$ is a solution set for the defining equations of C_m . Consequently, we can associated H with a face of C_m via $\operatorname{Ap}_m(H)$.

Example: $H = \langle 9, 12, 15, 17, 19 \rangle$ has relations

We associate ${\boldsymbol{H}}$ with the face defined by

$$\Delta = \{(1,3), (1,6), (3,8), (6,8), (8,8)\}.$$

Equivalence Classes

Let $\sigma \in \operatorname{Aut}\left(\mathbb{Z}/m\mathbb{Z}\right)$ and given a face Δ , define

$$\sigma(\Delta) := \left\{ (\sigma(i), \sigma(j)) : (i, j) \in \Delta \right\}.$$

Proposition (C-K'23)

Let $\sigma \in \operatorname{Aut}(\mathbb{Z}/m\mathbb{Z})$. Suppose H and H' are numerical semigroups associated to Δ and $\sigma(\Delta)$, respectively. The ring R_H has a nontrivial semidualizing module if and only if $R_{H'}$ has a nontrivial semidualizing module.

Class Representatives?

Consider the case m = 9 and $H = \langle 9, a, b, c, d \rangle$.

1	2	4	5	7	8
(1, 2, 3, 4)	(2, 4, 6, 8)	(3, 4, 7, 8)	(1, 2, 5, 6)	(1, 3, 5, 7)	(5, 6, 7, 8)
(1, 2, 3, 5)	(1, 2, 4, 6)	(2, 3, 4, 8)	(1, 5, 6, 7)	(3, 5, 7, 8)	(4, 6, 7, 8)
(1, 2, 3, 6)	(2, 3, 4, 6)	(3, 4, 6, 8)	(1, 3, 5, 6)	(3, 5, 6, 7)	(3, 6, 7, 8)
(1, 2, 3, 7)	(2, 4, 5, 6)	(1, 3, 4, 8)	(1, 5, 6, 8)	(3, 4, 5, 7)	(2, 6, 7, 8)
(1, 2, 3, 8)	(2, 4, 6, 7)	(3, 4, 5, 8)	(1, 4, 5, 6)	(2, 3, 5, 7)	(1, 6, 7, 8)
(1, 2, 4, 5)	(1, 2, 4, 8)	(2, 4, 7, 8)	(1, 2, 5, 7)	(1, 5, 7, 8)	(4, 5, 7, 8)
(1, 2, 4, 7)	(2, 4, 5, 8)	(1, 4, 7, 8)	(1, 2, 5, 8)	(1, 4, 5, 7)	(2, 5, 7, 8)
(1, 2, 6, 7)	(2, 3, 4, 5)	(1, 4, 6, 8)	(1, 3, 5, 8)	(2, 5, 6, 7)	(2, 3, 7, 8)
(1, 2, 6, 8)	(2, 3, 4, 7)	(4, 5, 6, 8)	(1, 3, 4, 5)	(2, 5, 6, 7)	(1, 3, 7, 8)
(1, 2, 7, 8)	(2, 4, 5, 7)	(1, 4, 5, 8)	(1, 4, 5, 8)	(2, 4, 5, 7)	(1, 2, 7, 8)
(1, 3, 4, 6)	(2, 3, 6, 8)	(3, 4, 6, 7)	(2, 3, 5, 6)	(1, 3, 6, 7)	(3, 5, 6, 8)
(1, 3, 4, 7)	(2, 5, 6, 8)	(1, 3, 4, 7)	(2, 5, 6, 8)	(1, 3, 4, 7)	(2, 5, 6, 8)
(1,3,6,8)	(2, 3, 6, 7)	(3, 4, 5, 6)	(3, 4, 5, 6)	(2, 3, 6, 7)	(1, 3, 6, 8)
(1, 4, 6, 7)	(2, 3, 5, 8)	(1, 4, 6, 7)	(2, 3, 5, 8)	(1, 4, 6, 7)	(2, 3, 5, 8)

Class Representatives and Results

Fact: For m = 9 and $H = \langle 9, a, b, c, d \rangle$ there are 127 classes.

$(\overline{a}, \overline{b}, \overline{c}, \overline{d})$	Δ	Sample	Burch?	Nontrivial?
(1, 3, 6, 8)	$\{(1,1),(1,3),(6,8),(1,6)\}$	(9, 10, 15, 17, 21)	Yes	No
(1, 3, 6, 8)	$\{(1,1),(1,3),(6,8),(8,8)\}$	$\langle 9, 17, 19, 24, 30 \rangle$	Yes	No
(1, 3, 6, 8)	$\{(3,8),(1,3),(6,8),(1,6)\}$	(9, 12, 15, 26, 28)	No	Yes
(1, 3, 6, 8)	$\{(3,8),(1,3),(6,8),(8,8)\}$	(9, 12, 15, 17, 28)	Yes	No
(1, 3, 6, 8)	$\{(1,1),(1,3),(6,8),(1,6),(8,8)\}$	$\langle 9, 24, 26, 28, 39 \rangle$	Yes	No
(1, 3, 6, 8)	$\{(1,1),(3,8),(1,3),(6,8),(1,6)\}$	(9, 12, 15, 19, 26)	No	Yes
(1, 3, 6, 8)	$\{(1,1),(3,8),(1,3),(6,8),(8,8)\}$	$\langle 9, 17, 19, 21, 24 \rangle$	Yes	No
(1, 3, 6, 8)	$\{(3,8),(1,3),(6,8),(1,6),(8,8)\}$	$\langle 9, 12, 15, 17, 19 \rangle$	No	Yes
(1, 3, 6, 8)	$\{(1,1),(3,8),(1,3),(6,8),(1,6),(8,8)\}$	$\langle 9, 15, 17, 19, 21 \rangle$	No	Yes
(1, 4, 6, 7)	$\{(1,1), (6,6), (7,7), (4,4)\}$	Ø	-	-
(1, 2, 3, 6)	$\{(1,3),(2,3),(1,6),(2,6)\}$	$\langle 9, 12, 15, 19, 20 \rangle$	No	Yes
(1, 2, 3, 6)	$\{(1,3), (2,2), (2,3), (1,6), (2,6)\}$	(9, 10, 11, 12, 15)	No	Yes
(1, 2, 4, 7)	$\{(1,2),(1,4),(7,7),(2,4),(1,7)\}$	(9, 19, 20, 25, 31)	No	No

Remark: There are 24 distinct Δ .

Main Result 1

Theorem (C-K'23)

Let $H = \langle 9, a, b, c, d \rangle$ be a numerical semigroup associated with Δ . The ring R_H has a nontrivial semidualizing module if and only if there exists $\sigma \in \operatorname{Aut}(\mathbb{Z}/9\mathbb{Z})$ such that $\sigma(\Delta)$ is equal to one of the following sets;

$$\begin{array}{c} \bullet \{(1,3),(2,3),(1,6),(2,6)\};\\ \bullet \{(1,3),(2,2),(2,3),(1,6),(2,6)\};\\ \bullet \{(1,1),(3,8),(1,3),(6,8),(1,6)\};\\ \bullet \{(3,8),(1,3),(6,8),(1,6)\};\\ \bullet \{(1,1),(3,8),(1,3),(6,8),(1,6)\};\\ \bullet \{(1,1),(3,8),(1,3),(6,8),(1,6),(8,8)\}.\\ \end{array} \right\} fize of or bit = 0$$

Higher Multiplicity

Question: How do these results carry to numerical semigroups H where $e(R_H) > 9$?

Issue: If R_H has a nontrivial semidualizing module and $e(R_H) = 10$, then $edim(R_H) \in \{5, 6\}$.

Example $e(R_{H'}) > 9$

Audience Participation: Pick a highlighted number.

Example:
$$H' = \langle 26, 27, 36, 45, 51, 57 \rangle$$

 $e(R_{H'}) = 2.6$
Semidualizing Module: $\langle 1, t^6 \rangle$

Gluings

Definition

Let H_1 and H_2 be numerical semigroups. Given $a_i \in H_i$ such that $gcd(a_1, a_2) = 1$, the gluing of H_1 and H_2 (with respect to a_1 and a_2) is the numerical semigroup

$$H = \langle a_2 H_1, a_1 H_2 \rangle = \{ a_2 r + a_1 s : r \in H_1, s \in H_2 \}.$$

Moreover, if we write R_i for R_{H_i} , then

$$R_H = k \left[\left[t^{a_2 r + a_1 s} : t^r \in R_1, t^s \in R_2 \right] \right].$$

Example continued:

$$||' = \langle 26(1), 3H \rangle$$
 where $H = \langle 9, 12, 15, 17, 19 \rangle$

Gluing Results

Theorem (C-K'23)

Let H_1 and H_2 are numerical semigroups, take $a_i \in H_i$ such that $gcd(a_1, a_2) = 1$, and set $H = \langle a_2H_1, a_1H_2 \rangle$. Suppose R_i has semidualizing module I_i , then R_H has semidualizing module

$$I = \langle t^{a_2 r + a_1 s} : t^r \in I_1, t^s \in I_2 \rangle.$$

Corollary (C-K'23)

If either I_1 or I_2 is nontrivial, then I is a nontrivial semidualizing module over R_H .

Example continued:
$$H = \langle 9, 12, 15, 17, 19 \rangle$$
 has $I = \langle 1, t^2 \rangle$
so $H' = \langle 26, 27, 36, 45, 51, 57 \rangle$ has $I' = \langle 1^3, (t^2)^3 \rangle = \langle 1, t^6 \rangle$

Main Result 2

Theorem (C-K'23)

For all $a \in \mathbb{Z}$ with $a \ge 9$, there exists a local ring R with e(R) = a such that R has a nontrivial semidualizing module.

Proof.

For each $a \ge 9$, we give a numerical semigroup H. The gluing $H' = \langle a, bH \rangle$ with $9b \ge a$ where gcd(a, b) = 1 produces $R = R_{H'}$. **Case 1:** For $a \notin \{13, 14, 16, 17\}$, consider $H = \langle 9, 10, 11, 12, 15 \rangle$. **Case 2:** For a = 13, consider $H = \langle 9, 11, 12, 13, 15 \rangle$. **Case 3:** For $a \in \{14, 16\}$, consider $H = \langle 9, 12, 14, 15, 16 \rangle$. **Case 4:** For a = 17, consider $H = \langle 9, 12, 15, 17, 19 \rangle$.

Thank you!