Semidualizing Modules Over Numerical Semigroup Rings

Hugh Geller
Joint work with Ela Celikbas and Toshinori Kobayashi

West Virginia University
October 2, 2023

Motivating Goal:

Goal: Classify which numerical semigroup rings possess a nontrivial semidualizing module.

Questions to address:

- What is a numerical semigroup ring?
- What is a semidualizing module? What makes it nontrivial?
- What is the motivation behind this goal?
- What progress has been made?

Numerical Semigroup Rings

Definition (Numerical Semigroup)

Let \mathbb{N} denote the set of non-negative integers. A numerical semigroup is a subset $H \subset \mathbb{N}$ such that
(1) $0 \in H$;
(2) H is closed under addition; and
(3) $\operatorname{gcd}(H)=1$ 。

Definition (Numerical Semigroup Ring)

Let k be a field and $H=\left\langle a_{1}, \ldots, a_{\ell}\right\rangle$ a numerical semigroup. The numerical semigroup ring (associated to H over k) is the ring

$$
R_{H}=k \llbracket H \rrbracket:=k \llbracket t^{a_{1}}, \ldots, t^{a_{\ell}} \rrbracket \subseteq k \llbracket t \rrbracket .
$$

Numerical Semigroup Terminology and Facts

Set $H=\left\langle a_{1}, \ldots, a_{\ell}\right\rangle$ with $a_{1}<a_{2}<\cdots<a_{\ell}$.
(1) Frobenius of H :

$$
F_{H}:=\max \mathbb{N} \backslash H
$$

(2) Pseudo-Frobenius number of H :

$$
\operatorname{PF}(H):=\{f \in \mathbb{N} \backslash H: \text { for all } a \in H, a+f \in H\}
$$

(3) Multiplicity of R_{H} :

$$
e\left(R_{H}\right)=a_{1}
$$

(4) Embedding Dimension of R_{H} :

$$
\operatorname{edim}\left(R_{H}\right)=\ell
$$

Example: $H=\langle 9,12,15,17,19\rangle$

0	1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16	17
18	19	20	21	22	23	24	25	26
27	28	29	30	31	32	33	34	35
36	37	38	39	40	41	42	43	44
45	46	47	48	49	50	51	52	53

(1) $F_{H}=25$
(2) $\operatorname{PF}(H)=\{20,22,23,25\}$
(3) $e\left(R_{H}\right)=9$
(4) $\operatorname{edim}\left(R_{H}\right)=5$

Canonical Module

Definition

Let (R, \mathfrak{M}) be a Cohen-Macaulay local ring and K an R-module. We say K is a canonical module if it is
(1) a maximal Cohen-Macaulay of type 1; and
(2) K has finite injective dimension.

Fact

Let (R, \mathfrak{M}) be a Cohen-Macaulay local ring. The canonical module K is unique up to isomorphism.

Fact

Let H be a numerical semigroup. The ring R_{H} possesses a canonical module.

Example Continued: $H=\langle 9,12,15,17,19\rangle$

Fact

Let H be a numerical semigroup and R_{H} the corresponding numerical semigroup ring with canonical module K_{H}. We have

$$
K_{H} \cong\left\langle t^{F_{H}-f}: f \in \operatorname{PF}(H)\right\rangle
$$

Recall: $\operatorname{PF}(H)=\left\{20,22,23,25=F_{H}\right\}$

$$
\begin{aligned}
\mid T_{H} \cong & \left.\doteq t^{25-25}, t^{25-23}, t^{25-22}, t^{25-20}\right\rangle \\
& =\left\langle 1, t^{2}, t^{3}, t^{5}\right\rangle
\end{aligned}
$$

Semidualizing Module

Let K be the canonical module for (R, \mathfrak{M}).

Definition

A finitely generated R-module C is semidualizing if it satisfies
(1) The natural homothety map $\chi_{C}^{R}: R \rightarrow \operatorname{Hom}_{R}(C, C)$ given by $\chi_{C}^{R}(r)(c)=r c$ is an R-module isomorphism; and
(2) $\operatorname{Ext}_{R}^{i}(C, C)=0$ for all $i>0$.

It follows that R and K are both semidualizing module for R; we refer to them as trivial semidualizing modules.

Fact (Christensen'01)

If R is a Gorenstein, then it only has trivial semidualizing modules.

Only Trivial Semidualizing Modules

Proposition

Let (R, \mathfrak{M}) be a Cohen-Macaulay local ring such that
(1) $\operatorname{edim}(R)-\operatorname{depth}(R) \leq 3$ (LM'20, AINSW'22);
(2) $\mathbf{x}=x_{1}, \ldots, x_{n} \in \mathfrak{M}$ is R-regular and $R /(\mathbf{x})$ only has trivial semidualizing module (CSW'08 and FSW'07, NSW'13);
(3) $e(R) \leq 8$; or
(4) $R \cong S / I$ where S is regular local and I is a Burch ideal of S; then R only has trivial semidualizing modules.

Proposition

Let (R, \mathfrak{M}) be a Cohen-Macaulay local ring. If $e(R)=9$ and R has a nontrivial semidualizing module, then R has type $r(R)=4$ and $\operatorname{edim}(R)=4+\operatorname{dim} R$.

Example Continued: $H=\langle 9,12,15,17,19\rangle$

Observe:

- $e\left(R_{H}\right)=9$
- $K_{H} \cong\left\langle 1, t^{2}, t^{3}, t^{5}\right\rangle$
- $r\left(R_{H}\right)=\mu_{R}\left(K_{H}\right)=4$
- $\operatorname{edim}\left(R_{H}\right)=5=4+\operatorname{dim} R_{H}$

Fact: $I=\left\langle 1, t^{2}\right\rangle$ and $I^{\vee}=\left\langle 1, t^{3}\right\rangle$ are semidualizing over R_{H}.

Lemma

Let R be a Cohen-Macaulay local ring with canonical module K. Write the functor $\operatorname{Hom}_{R}(-, K)$ as $(-)^{\vee}$. Let C be a semidualizing over R. Then
(1) C^{\vee} is semidualizing.
(2) $C \otimes_{R} C^{\vee} \cong K$.
(3) $\mu_{R}(C) \mu_{R}\left(C^{\vee}\right)=r(R)$.

Set-up:

Let H be a numerical semigroup such that:
(1) $e\left(R_{H}\right)=9$; and
(2) $\operatorname{edim}\left(R_{H}\right)=5$.

We consider $H=\langle 9, a, b, c, d\rangle$ with $9<a<b<c<d$.

Problem: There are infinitely many choices of H !

Solution: Equivalence classes

Apéry Set

Definition

Given a numerical semigroup H and integer $3 \leq m \in H$, the Apéry set of H with respect to m is the set

$$
\operatorname{Ap}_{m}(H)=\left\{0, h_{1}, h_{2}, \ldots, h_{m-1}\right\}
$$

where $h_{i}=\min \{h \in H: h \equiv i \bmod m\}$ for $1 \leq i<m$.
Consider $H=\langle 9,12,15,17,19\rangle$

$$
\operatorname{Ap}_{9}(H)=\{0,19,29,12,31,32,15,34,17\}
$$

Apéry Set Relations for $H=\langle 9,12,15,17,19\rangle$

$$
\operatorname{Ap}_{9}(H)=\{0,19,29,12,31,32,15,34,17\}
$$

Relations:

$$
\begin{aligned}
& h_{1}+h_{3}=h_{4}, \quad h_{1}+h_{6}=h_{7}, \\
& h_{6}+h_{8}=h_{5}, \quad h_{8}+h_{8}=h_{7},
\end{aligned} \begin{cases}h_{3}+h_{8}=h_{2}, \\
h_{i}+h_{j}>h_{i+j} & i+j<9 \\
h_{i}+h_{j}>h_{i+j-9} & i+j>9\end{cases}
$$

Fact

Let H be a numerical semigroup and $m \in H$. Given $1 \leq i, j<m$ with $i+j \neq m$, then the elements of $\mathrm{Ap}_{m}(H)$ satisfy

$$
\left\{\begin{array}{ll}
h_{i}+h_{j} \geq h_{i+j} & i+j<m \\
h_{i}+h_{j} \geq h_{i+j-m} & i+j>m
\end{array} .\right.
$$

Kunz's Polyhedron (Kind of)

For $3 \leq m \in \mathbb{Z}$, the polyhedral cone C_{m} is the solution set of

$$
\begin{cases}X_{i}+X_{j} \geq X_{i+j} & 1 \leq i<j<m \text { and } i+j<m \\ X_{i}+X_{j} \geq X_{i+j-m} & 1 \leq i<j<m \text { and } i+j>m\end{cases}
$$

Note: The facets of C_{m} are given by

$$
E_{i j}= \begin{cases}X_{i}+X_{j}=X_{i+j} & 1 \leq i<j<m \text { and } i+j<m \\ X_{i}+X_{j}=X_{i+j-m} & 1 \leq i<j<m \text { and } i+j>m\end{cases}
$$

If F is a face of C_{m}, then it is completely determined by the set

$$
\Delta_{F}:=\left\{(i, j): F \subseteq E_{i j}\right\}
$$

Fact

If H is a numerical semigroup with $m \in H$, then $\operatorname{Ap}_{m}(H)$ is a solution set for the defining equations of C_{m}. Consequently, we can associated H with a face of C_{m} via $\mathrm{Ap}_{m}(H)$.

Example: $H=\langle 9,12,15,17,19\rangle$ has relations

$$
\begin{aligned}
& h_{1}+h_{3}=h_{4}, \quad h_{1}+h_{6}=h_{7}, \\
& h_{6}+h_{8}=h_{5}, \quad h_{8}+h_{8}=h_{7},
\end{aligned} \begin{cases}h_{3}+h_{8}=h_{2}, \\
h_{i}+h_{j}>h_{i+j} & i+j<9 \\
h_{i}+h_{j}>h_{i+j-9} & i+j>9\end{cases}
$$

We associate H with the face defined by

$$
\Delta=\{(1,3),(1,6),(3,8),(6,8),(8,8)\}
$$

Equivalence Classes

Let $\sigma \in \operatorname{Aut}(\mathbb{Z} / m \mathbb{Z})$ and given a face Δ, define

$$
\sigma(\Delta):=\{(\sigma(i), \sigma(j)):(i, j) \in \Delta\}
$$

Proposition (C-K'23)

Let $\sigma \in \operatorname{Aut}(\mathbb{Z} / m \mathbb{Z})$. Suppose H and H^{\prime} are numerical semigroups associated to Δ and $\sigma(\Delta)$, respectively. The ring R_{H} has a nontrivial semidualizing module if and only if $R_{H^{\prime}}$ has a nontrivial semidualizing module.

Class Representatives?

Consider the case $m=9$ and $H=\langle 9, a, b, c, d\rangle$.

1	2	4	5	7	8
$(1,2,3,4)$	$(2,4,6,8)$	$(3,4,7,8)$	$(1,2,5,6)$	$(1,3,5,7)$	$(5,6,7,8)$
$(1,2,3,5)$	$(1,2,4,6)$	$(2,3,4,8)$	$(1,5,6,7)$	$(3,5,7,8)$	$(4,6,7,8)$
$(1,2,3,6)$	$(2,3,4,6)$	$(3,4,6,8)$	$(1,3,5,6)$	$(3,5,6,7)$	$(3,6,7,8)$
$(1,2,3,7)$	$(2,4,5,6)$	$(1,3,4,8)$	$(1,5,6,8)$	$(3,4,5,7)$	$(2,6,7,8)$
$(1,2,3,8)$	$(2,4,6,7)$	$(3,4,5,8)$	$(1,4,5,6)$	$(2,3,5,7)$	$(1,6,7,8)$
$(1,2,4,5)$	$(1,2,4,8)$	$(2,4,7,8)$	$(1,2,5,7)$	$(1,5,7,8)$	$(4,5,7,8)$
$(1,2,4,7)$	$(2,4,5,8)$	$(1,4,7,8)$	$(1,2,5,8)$	$(1,4,5,7)$	$(2,5,7,8)$
$(1,2,6,7)$	$(2,3,4,5)$	$(1,4,6,8)$	$(1,3,5,8)$	$(2,5,6,7)$	$(2,3,7,8)$
$(1,2,6,8)$	$(2,3,4,7)$	$(4,5,6,8)$	$(1,3,4,5)$	$(2,5,6,7)$	$(1,3,7,8)$
$(1,2,7,8)$	$(2,4,5,7)$	$(1,4,5,8)$	$(1,4,5,8)$	$(2,4,5,7)$	$(1,2,7,8)$
$(1,3,4,6)$	$(2,3,6,8)$	$(3,4,6,7)$	$(2,3,5,6)$	$(1,3,6,7)$	$(3,5,6,8$
$(1,3,4,7)$	$(2,5,6,8)$	$(1,3,4,7)$	$(2,5,6,8)$	$(1,3,4,7)$	$(2,5,6,8)$
$(1,3,6,8)$	$(2,3,6,7)$	$(3,4,5,6)$	$(3,4,5,6)$	$(2,3,6,7)$	$(1,3,6,8)$
$(1,4,6,7)$	$(2,3,5,8)$	$(1,4,6,7)$	$(2,3,5,8)$	$(1,4,6,7)$	$(2,3,5,8)$

Class Representatives and Results

Fact: For $m=9$ and $H=\langle 9, a, b, c, d\rangle$ there are 127 classes.

$(\bar{a}, \bar{b}, \bar{c}, \bar{d})$	Δ	Sample	Burch?	Nontrivial?
$(1,3,6,8)$	$\{(1,1),(1,3),(6,8),(1,6)\}$	$\langle 9,10,15,17,21\rangle$	Yes	No
$(1,3,6,8)$	$\{(1,1),(1,3),(6,8),(8,8)\}$	$\langle 9,17,19,24,30\rangle$	Yes	No
$(1,3,6,8)$	$\{(3,8),(1,3),(6,8),(1,6)\}$	$\langle 9,12,15,26,28\rangle$	No	Yes
$(1,3,6,8)$	$\{(3,8),(1,3),(6,8),(8,8)\}$	$\langle 9,12,15,17,28\rangle$	Yes	No
$(1,3,6,8)$	$\{(1,1),(1,3),(6,8),(1,6),(8,8)\}$	$\langle 9,24,26,28,39\rangle$	Yes	No
$(1,3,6,8)$	$\{(1,1),(3,8),(1,3),(6,8),(1,6)\}$	$\langle 9,12,15,19,26\rangle$	No	Yes
$(1,3,6,8)$	$\{(1,1),(3,8),(1,3),(6,8),(8,8)\}$	$\langle 9,17,19,21,24\rangle$	Yes	No
$(1,3,6,8)$	$\{(3,8),(1,3),(6,8),(1,6),(8,8)\}$	$\langle 9,12,15,17,19\rangle$	No	Yes
$(1,3,6,8)$	$\{(1,1),(3,8),(1,3),(6,8),(1,6),(8,8)\}$	$\langle 9,15,17,19,21\rangle$	No	Yes
$(1,4,6,7)$	$\{(1,1),(6,6),(7,7),(4,4)\}$	\emptyset	-	-
$(1,2,3,6)$	$\{(1,3),(2,3),(1,6),(2,6)\}$	$\langle 9,12,15,19,20\rangle$	No	Yes
$(1,2,3,6)$	$\{(1,3),(2,2),(2,3),(1,6),(2,6)\}$	$\langle 9,10,11,12,15\rangle$	No	Yes
$(1,2,4,7)$	$\{(1,2),(1,4),(7,7),(2,4),(1,7)\}$	$\langle 9,19,20,25,31\rangle$	No	No

Remark: There are 24 distinct Δ.

Main Result 1

Theorem (C-K'23)

Let $H=\langle 9, a, b, c, d\rangle$ be a numerical semigroup associated with Δ. The ring R_{H} has a nontrivial semidualizing module if and only if there exists $\sigma \in \operatorname{Aut}(\mathbb{Z} / 9 \mathbb{Z})$ such that $\sigma(\Delta)$ is equal to one of the following sets;
(1) $\{(1,3),(2,3),(1,6),(2,6)\}$; $\}$ size of orbit $=6$
(2) $\{(1,3),(2,2),(2,3),(1,6),(2,6)\} ;$
(3) $\{(1,1),(3,8),(1,3),(6,8),(1,6)\}$;)
(4) $\{(3,8),(1,3),(6,8),(1,6)\}$;
(5) $\{(1,1),(3,8),(1,3),(6,8),(1,6),(8,8)\}$. size of or bit $=3\}$

Higher Multiplicity

Question: How do these results carry to numerical semigroups H where $e\left(R_{H}\right)>9$?

Issue: If R_{H} has a nontrivial semidualizing module and $e\left(R_{H}\right)=10$, then $\operatorname{edim}\left(R_{H}\right) \in\{5,6\}$.

Example $e\left(R_{H^{\prime}}\right)>9$

Audience Participation: Pick a highlighted number.

0	1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16	17
18	19	20	21	22	23	24	25	$2 \overline{6}$
27	28	29	30	31	32	33	34	35

Example: $H^{\prime}=\langle 26,27,36,45,51,57\rangle$

$$
e\left(R_{H^{\prime}}\right)=26
$$

Semidualizing Module: $\left(1, t^{6}\right)$

Gluing

Definition

Let H_{1} and H_{2} be numerical semigroups. Given $a_{i} \in H_{i}$ such that $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1$, the gluing of H_{1} and H_{2} (with respect to a_{1} and a_{2}) is the numerical semigroup

$$
H=\left\langle a_{2} H_{1}, a_{1} H_{2}\right\rangle=\left\{a_{2} r+a_{1} s: r \in H_{1}, s \in H_{2}\right\} .
$$

Moreover, if we write R_{i} for $R_{H_{i}}$, then

$$
R_{H}=k\left[\left[t^{a_{2} r+a_{1} s}: t^{r} \in R_{1}, t^{s} \in R_{2}\right]\right] .
$$

Example continued:

$$
H^{\prime}=\langle 26(1), 3 H\rangle \text { where } H=\langle 9,12,15,17,19\rangle
$$

Gluing Results

Theorem (C-K'23)

Let H_{1} and H_{2} are numerical semigroups, take $a_{i} \in H_{i}$ such that $\operatorname{gcd}\left(a_{1}, a_{2}\right)=1$, and set $H=\left\langle a_{2} H_{1}, a_{1} H_{2}\right\rangle$. Suppose R_{i} has semidualizing module I_{i}, then R_{H} has semidualizing module

$$
I=\left\langle t^{a_{2} r+a_{1} s}: t^{r} \in I_{1}, t^{s} \in I_{2}\right\rangle
$$

Corollary (C-K'23)

If either I_{1} or I_{2} is nontrivial, then I is a nontrivial semidualizing module over R_{H}.

Example continued: $H=\langle 9,12,15,17,19\rangle$ has $I=\left\langle 1, t^{2}\right\rangle$
so $H^{\prime}=\langle 26,27,36,45,51,57\rangle$ has $I^{\prime}=\left\langle 1^{3},\left(t^{2}\right)^{3}\right\rangle=\left\langle 1, t^{6}\right\rangle$

Main Result 2

Theorem (C-K'23)

For all $a \in \mathbb{Z}$ with $a \geq 9$, there exists a local ring R with $e(R)=a$ such that R has a nontrivial semidualizing module.

Proof.

For each $a \geq 9$, we give a numerical semigroup H. The gluing $H^{\prime}=\langle a, b H\rangle$ with $9 b \geq a$ where $\operatorname{gcd}(a, b)=1$ produces $R=R_{H^{\prime}}$.
Case 1: For $a \notin\{13,14,16,17\}$, consider $H=\langle 9,10,11,12,15\rangle$.
Case 2: For $a=13$, consider $H=\langle 9,11,12,13,15\rangle$.
Case 3: For $a \in\{14,16\}$, consider $H=\langle 9,12,14,15,16\rangle$.
Case 4: For $a=17$, consider $H=\langle 9,12,15,17,19\rangle$.

Thank you!

